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Abstract

We propose a new four parameters continuous model called the Topp Leone generalized inverted
Kumaraswamy distribution that extends the generalized inverted Kumaraswamy distribution. Basic
mathematical properties of the new distribution are invstigated such as; quantile function, raw and
incomplete moments, generating functions, probability weighted moments, order statistics, Rényi
entropy, stochastic ordering and stress strength model. The method of maximum likelihood is used to
estimate the model parameters of the new distribution. A Monte Carlo simulation is conducted to
examine the behavior of the parameter estimates. The applicability of the new model is demonstrated by
means of two real applications.

Keywords: Inverted Kumaraswamy distribution, Probability weighted moments, Order Statistics,
Stochastic ordering, Stress strength model, Topp Leone-G family.
1. Introduction

The inverted distributions have many applications in different fields such as; biological sciences, life
testing problems, engineering sciences, environmental studies and econometrics. In the last two
decades, the researchers proposed many inverted distributions due to its great applications; for example,
[1] studied the inverted Burr type XII distribution, [2] introduced the inverted Pareto type I distribution,
[3] studied the inverted exponential model and [4] proposed the exponentiated inverted Weibull
distribution and [5] investigated the inverted Kumaraswamy distribution, among others.

Moreover, the inverted Kumaraswamy (IKw) distribution has probability density function (pdf) and
distribution function (cdf) are given, respictevely, by

frw (G, B) =aB(1+x) ™ {1—(1+ X) }ﬂfl x>0, o)

and

Fiew (X, B) :{1—(l+ x)fa}ﬂ,xzo, )

where >0 and B>0 are the shape parameters. [6] introduced an extension of the IKw distribution

called the generalized inverted Kumaraswamy (GIKw) distribution with pdf and cdf are given,
respictevely, by

fow (X, B, A) = oA (1+ x* >_a_l{1—(1+ x* )_a}ﬁl ,X>0, (3)

and
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Let g(X;¢) and G(X;#) denote the probability density function (pdf) and cumulative distribution
function (cdf) of a baseline model with parameter vector ¢. [7] introduced the Topp Leone-G (TL-G)
family of distributions with cdf and pdf given by

— 6
FTL—G(X;¢):{1_G(X;¢)2} ,0>0,xeR, )
and
—~ — 2161
e (66) =209(#)G(x ) {1-G(x#)°| " xeR, ©)

where, G(x;qﬁ) =1-G(x;¢) and ¢ is the vector of parameters for the baseline cdf G.

This study aims to introduce a new generalization of the GIKw distribution by using the TL-G family
called Topp Leone generalized inverted Kumaraswamy (TLGIKw) distribution to obtain more flexability
and accuracy in fitting data than some well known distributions. The cdf and pdf of the TLGIKw
distribution are given, respectively, by

4
1)
F(x¢) = 1—{1—[1—(1“&) } } a4, B,0>0,x>0, (7

and

I————
6-1

x 1—{1—[1—(“ xi)_“r}z x>0, ®)

If the random variable X follows (8), we will denoted by X ~TLGIKwW(a,f,4,6). The hazard function
7(x) for the TLGIKw distribution is given by

o) o o T

x 1—{1—[1—(1+xﬂ)_“r}2 1- 1—{1—{1—(1“‘)_1?2 | x> 0. (9)

The plots of the density and hazard functions of the TLGIKw distribution are displayed in Figure 1.
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Figure 1: Plots of the TLGIKw pdf and hrf for selected parameter values.

The remainder of this paper is orgainzed as follows. In Section 2, an usefull expansion of the pdf
corresponding to the new distribution is introduced. In Section 3, basic mathematical properties of the
TLGIKw model are studied. In Section 4, the maximum likelihood estimates are obtained for the model
parameters. A simulation study is conducted in Section 5. In Section 6, we provide two applications.
Section 7 offers some concluding remarks.

2. Expansion of the Density Function

An usefull expansion of the density function of the TLGIKw distribution will be introduced in this
section.

Applying the generalized binomial series in (8), we obtain

f (X; ¢) = Zaﬂiei(e j_lj(_l)j Xl—l (1+ Xi )fa—l

=0

x[l_(1+x/1 )ar—l {1{1_(“% )aﬂz "

_ Zaﬂlgizhl(ﬁj—lj(z ji+1j (—l)j” e (1+ v )_a_l{l—(l.;. 2 )_a}ﬂ(iﬂ)l

j=0 i=0
or

2j+1

f(x) = Z 7Ny iy a (0, (10)
i=0

o - . o Y T
where, 7 =20 (141 () [Q;ljlzjiﬂj and haﬁ(m)ll(x)=aﬁ(i+1)zxi*1(1+x4) “ {1_(1+x’1) a}
=0

is the pdf of the GIKw distribution.
3. Mathematical Properties

In this section, we will investigate some main properties of the TLGIKw distribution.



3.1. Quantile Function

The guantile function of the TLGIKw distribution Q(u) = F*(u) for ue(0,1), «>0, >0, 1>0
and &> 0 is the solution of the non-linear equation

~Ya
Q(u)=G™*log /1‘1[{1—[1—(1—&/9)]/1%} —1} . (12)

3.2. Moments and Generating Functions

Let X be arandom variable with the TLGIKw distribution, then the raw moment, say 4, is given
by

o0

i =E(X")= I X" £ (x) dx
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Using the the generalized binomial series in the above equation, we have

/J; — aﬂlzjzﬂi(ﬂ(l +€1) —1j(_1)( pa (i +1)J': I+ (1+ o )7a(c+l)*l dx
i=0 (=0 ’
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Letting y=(1+x ) , We obtain

2j+l o - _
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where, ﬂi*:(fl)[aﬁ(iJrl)[ﬁ(l +(l)71]7ri and B(m,n):j x™1-x)"Ldx is the beta function.
i 0

Substituting r =1,2,3,4 in (12), we obtain the mean = 2/, variance = 1} — 142, skewness = 44 / 11/¥?
and kurtosis = 24, / 14°.

The nth central moment of the TLGIKw distribution, say £, can be obtained from
-(n n-r
t =Z[J(—m’) E(x")

gy i[:)(—ﬁé)”’r 7 B(a(t+1)—r/2,1/A+1), (13)

The rth incomplete moment of the TLGIKw distribution, denoted by ¢, (t), is
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where, 7" =

A (—a(c+1)—1j .
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The moment and probability generating functions of the TLGIKw distribution, denoted by My (t)
and Mx;(t) respectively are given below:

2j+l =

My®=> > t—rlﬂi* B(a((+1)~r/A,1/A+1). (15)
i=0 r,(=0 "~
and
2]+l r
My (1) = Z 7 B(a(l+1)~r/A,r/2+1). (16)
i=0 r,(=0 !

3.3. Probability Weighted Moments

The (r + s)th PWM of a random variable X with the TLGIKw distribution, say M is given by

r,s?

M, s = E(XrF(x)S)z T X"F(x)° f(x)dx. (17)
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From (7) and (8), we have
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Subsituting from (18) in (17), we obtain
2j+l o
Mg = D> D & B(a(t+1)-r/4,r/A+1), (19)
i=0 (=0

where, & = (-1 afi + 1)[ﬁ L Cl) 1]5,.
3.4. Order Statistics

Let X, <X,p,...< X, be order statistics corresponding to a sample of size n from the TLGIKw

distribution. The pdf of X,.,, the Kth order statistic, is given by

k+|1
e 0= g0 _k 1)2( )( jf(x)F(x) (20)

Based on (7) and (8), we have

2j+1

FOOFO) ™™ =D 1y a2 (9), (21)
i=0

here, .:2600 . 1—1 -1 jHi (9(k+W)_]_j[2j+lj.
where, 7 Z(,+)() [ | |

" |
j=0

Using (21) in (20), we arrive at
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Furthermore, the rth moment of kth order statistic for the TLGIKw distribution is given by
2j+1

E (%) = Zi 7 B(a(t+1) ~r/A,1/2+1), (23)

i=0 (=0
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where, 77" = (-3 af(i +1)[,B(i +’1) —1]

0

3.5. Rényi Entropy

The Rényi entropy is defined as
1
I, (6) =——(log 1(9)), 24
r(0) =1 (l0g1(5)) (24)

where, 1(5) = J' f()%dx, 5>0 and &#0.

From (8), we have

1@=3¢ B(a(&+€)+%,5—%), (25)
(=0

where, & — (2a6)” ig,li 1 ,-”H(a(e_—l)j[m_zj](ﬂ(a +,i)—5).
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Inserting (25) in (24), we arrive at

|R(5)=$|OQ{Z§( B[a(5+f)+57_1,5—%j} (26)
(=0

3.6. Stochastic Ordering

Stochastic ordering is a vital criterion that is used in different fields to examine the comparative
behavior. According to [8], a random variable X, is said to be smaller than another random variable X,
in the likelihood ratio order (Xl <ir Xz) if f,(x)/f,(x) decreasesin x. The following theorem shows that
the TLGIKw distribution is ordered in likelihood ratio ordering if the appropriate assumptions exist.

Theorem 1: Let X; ~TLGIKW(a, 4,4,8). and Xy ~TLGIKW(ay, 5, ,6). If gi=p,, G =0,427, and
05120,’2, then XlS” X2.

Proof: We have

-1 (A1)
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Consequentely, f,(x)/f,(x) decreasesin X and hence X; <, X.

3.7. Stress Strength Model
Let X; and X, be two independent random variables with X;~TLGIKW(e,f,/4,6) and
Xy ~TLGIKW(ay, £y, 4, 6,) distributions. Then, the stress strength model is given by

R=Pr(X; <X;) = _[ f; (%*ﬂl'ﬂl*al)FZ (‘Zz’ﬂz’ﬂzvez )dx (27)
0
Using (7) and (8), we obtain
- A+A8 A - (g+1)-1
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q,5=0
o Adaw 6 -1\ 0, 2j +1)( 2w\ Aui +1) ~1\( Bol | —aram
e, 0 =2t Y. szwwwm( J_ j{wj[ | j{ ) j[ q j( 2 }[ ; j
j,w,m=0 i=0 (=0
Subsituting from (28) in (27), we have
R=> 0, I Xt (1+ x* )_%(qﬂ)_l dx
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_ j.1_1 i Qq,s T Z(al(q+l)+(1+ﬂ,zs)//11)—l (l— Z)(ﬂzsfl)/ﬂl dx
q,5=0 0
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R=A" Z Qg B (q+D) + 1+ 48)/ A4, (A5 =1/ 4) +1). (29)

q,5=0

4. Maximum Likelihood Estimation

The maximum likelihood estimates (MLEs) for the model parameters of the TLGIKw distribution
will be discussed in this section. Let x;,X,,...,X, be observed values of a random sample from the

TLGIKw distribution, then the corresponding log-likelihood function is given by

¢ =n{log(2)+log(e)+log (8)+log (1)+log (6)}+(4 ‘Ui‘og (%)
—(a +1)an“log (ai )+(,8—1)Z;:|og (1— 8™ )+Z;:Iog{l—(1— a’ )ﬂ}

+(9+1)i2n1:'°9{1‘[1—(1—ai“ )/’ﬂ’ (30)

where, g =1+ xﬁ.



By differentiating (30) with respect to «, 5,4 and 6, we obtain the following nonlinear system of
equations

n n |a @ Iog(a{“) n g ” (1—afa)ﬁ_1 log (a; )

+28(6-1) 2 | o
‘2 1—[1—(1—a;“)ﬂ}
%:ﬂ_zn:mg(l_a;a)_znl (1—a;a ﬂlog(l—ai’“)
op a “F I i1 1 (l—ai_a)ﬂ
2 l—aY |- (-7« [log(1-a
12(0-1)3 -s”) [ (-a) l 2‘9’( ) | o
" 1—[1—(1—51;“) }
g—j=%—Izlllog(xi)—(owl)iznl:{xi/1 IZ?(Xi)}+a(ﬂ_l) inl{xi’1 ai‘lo‘_‘;:ig(x,)}
L) a i) tog(x)
’B; 1—(1—a{“)ﬂ
A gra-l a B _(1-a B og(x
+2a,3(¢9—1)zn: L (1 ) [1 (1 ) }I 9(%) )

0 n 2
%:%+Zlog{1—[1—(1—ai“)ﬂ} } (34)

The MLEs, say © = (4,3,4,6), of ®=(a,/3,4,6)" can be obtained by equating the system of nonlinear
equations (31) to (34) to zero and solving them simultaneously by using statistical software.

5. Simulation Study

It is very difficult to compare the theoretical performances of the different estimators (MLESs) for the
TLGIKw distribution. Therefore, simulation is needed to compare the performances of the different
methods of estimation mainly with respect to their biases, mean square errors and Variances (MLEs) for
different sample sizes. A numerical study is performed using Mathematica 9 software. Different sample
sizes are considered through the experiments at size sizes n=50,100,200,300 and 500. In addition, the

different values of parameters («, 3, 4,6).

The experiment will be repeated 3000 times. In each experiment, the estimates of the parameters will be
obtained by maximum likelihood methods of estimation. The means, MSEs and biases for the different
estimators will be reported from these experiments.
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Table 1: The parameter estimation from the TLGIKw distribution using MLEs

n Parameters Initial VValues MLEs Bias MSE
o 0.7 0.71520 0.01920 0.01602
50 B 0.5 0.52758 0.02868 0.05168
A 0.5 0.52605 0.03605 0.02884
6 1.5 1.55390 0.08322 0.15907
a 0.7 0.71189 0.01289 0.00762
100 B 0.5 0.52033 0.02093 0.02444
A 0.5 0.51629 0.01329 0.00860
6 1.5 1.55347 0.05231 0.08030
a 0.7 0.70767 0.00751 0.00595
B 0.5 0.51242 0.01231 0.01779
200
A 0.5 0.51112 0.01102 0.00539
6 1.5 1.53394 0.03294 0.05551
o 0.7 0.70409 0.00419 0.00304
B 0.5 0.51001 0.00649 0.0939
300
A 0.5 0.50207 0.00551 0.00501
p) 1.5 1.51039 0.01005 0.02255
o 0.7 0.70298 0.00222 0.00235
B 0.5 0.50380 0.00352 0.00593
500
A 0.5 0.50445 0.00436 0.00205
6 15 1.50836 0.00620 0.02012

We can observe from Table 1 that, if the sample size increases, the empirical biases and MSEs decreases
in all cases.

6. Applications

This section represents the potentiality and flexibility of the new model as compared to some other
existing life-time models by using some real-life examples. The first application is initially used by [9].
The observed values are: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2,
27,29, 25, 23,1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2. The second real-life data was
originally reported by [10]. The data consists of 30 observations of the March precipitation (in inches) in
Minneapolis/St Paul. The observed values are: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20,
3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90,
2.05.

By using these data sets, we have made comparison for the new TLGIKw with generated Marshall-
Olkin extended inverted Kumaraswamy (MOEIK) distribution by [11], the Generalized Inverted
Kumaraswamy (GIK) by [6], Transmuted Exponentiated Inverse Rayleigh (TEIR) by [12], Logistic
Weibull (LW) by [13], Transmuted Power Lindley (TPL) by [14], Marshall Olkin Frechet (MOFr) by
[15] and Inverted Kumaraswamy (1K) distribution, by [5]. We use numerous goodness of fit measures to
compare the new developed model with other existing models such as Kolmogrov Smirnov (K-S),
Anderson Darling (A*) and Cramer-von Mises(W*). Tables (2) and (3) provide the values of goodness-
of-fit measures for the TLGIKw model and other fitted models, with the MLEs and their corresponding
standard errors (SEs) (in parentheses) for the two data sets respectively. The plots of the fitted model for
the two data sets are shown respectively in Figures 2 and 3.
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Table 2: MLEs estimates of the parameters with the goodness of fit measures for data set 1.

Models Estimates (Std. Error) K-S A* W*
TLGIKw 1.8917 19.0536 0.7962 0.1473
(@p.40) (01685) (02619) (0.1135)  (0.03a4) 0080 g20s e028
MOEIK 2.1193 1.7026 2.2471
(a,B8,2) (0.5717)  (0.8020)  (2.3570) L L2 eies
GIK 2.0236 2.6369 0.8858
(@fy)  (18839) (3.8684)  (0.6642) g5 D2 o=
TEIR 6.9784 0.0138 0.7798
(@6.2)  (12604)  (0.0247)  (0.1350) Lo 1eiht 2ZR
LW 2.7709 0.7056 0.5526
(@f.7)  (19353) (17.189)  (38.601) L B2 Ll
TPL 0.9265 0.7453 0.4094
(@6,7)  (01156)  (0.2414)  (0.5958) E03E L2850 UL
MOFr 29.053 1.4730 0.1124
(a,0,0) (2.3853)  (0.2397)  (0.1098) Lt L2 L
IK 1.7409 2.1058
(@.f) (03238)  (0.5373) 0.096 0.279 0.039
P-P plot Q-Q plot
EH ] - == =
g 2 7 o TLGIKw 5 N o TLGIKw
LLI - = —
— T T T T T I T T T T T T
a0 a2 0.4 0.6 o.a 1.0 W] 2 4 5 8 10 12
Theoretical probabilities Theoretical quantiles
Histogram and theoretical densitie Empirical and theoretical CDFs
— TLGIKw oo :
_g = e -
an o L] = _|
— ] —
= — | — TLGIKw
= I T T T 1 (=T T T T T
4] 2 4 5 3 a 2 4 5 8
data data

Figure 2: PP, QQ, epdf and ecdf plots of the TLGIKw distribution for data set 1.
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Table 3: MLEs estimates of the parameters with the goodness of fit measures for data set 2.

Models Estimates (Std. Error) K-S A* W*
TLGIKw 1.8972 20.9356 1.2356 0.2082
(@p.20) (16060) (3.5601) (0.9897) (0.3095) 0043 L LU
MOEIK 4.3228 6.5798 6.9226
(o, B,4) (0.9387)  (5.0017)  (9.6043) 068 G137 G013
GIK 1.9552 3.9501 1.4202
@fy)  (18l17) (56951)  (L.0211) Ly Lt L
TEIR 6.5630 0.0958 0.6700
(@6.2)  (80152)  (1.1693)  (0.2661) G182 s 212
LW 2.7709 0.3635 1.0061
(o, B, A) (243.47)  (32.322)  (88.405) e G191 o025
TPL 1.5965 0.4801 0.5812
(@0,4)  (02054) (0.1643)  (0.6548) Lol e L
MOFr 42598 2.6975 0.3548
(@.0,0) (2.8490)  (0.4482)  (0.2109) G035 o= .
IK 2.9872 8.5899
(@.p) 04730)  (3.1222) 0.114 0.338 0.055
P-P plot Q-Q plot
2 . =
= 2 4 -
= = >
= s 7T >
5 5 -] e TLGIKw
t T T T T T
1 2 3 4 5

Theoretical probabilities

Histogram and theoretical densitie

— — TLGIKw

= _]
= [ ]
= L
= S
& o/

= I T T 1

1 2 3 4
data

Thearetical guantiles

Empirical and theoretical CDFs

g
=
= _
=
= | — TLGIKw
= T T T T
1 2 3 4

data

Figure 3: PP, QQ, epdf and ecdf plots of the TLGIKw distribution for data set 2.

The values in Tables (2), (3) and the plots in figures (2), (3) indicate that the TLGIKW distribution yields

the best fit among all compatative models.
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7. Conclusions

We introduce a new member of the inverted distributions called called the Topp Leone generalized
inverted Kumaraswamy distribution. The main features of the new model such as the quantile function,
ordinary and incomplete moments, generating functions, order statistics, Rényi entropy, stress strength
model and stochastic ordering are derived. The maximum likelihood estimates are obtaine for the model
parameters and the importance of these estimates are assesed by means of a simulation study. The
usefulness of the new model is illustrated via two real applications. Numerical results show that the new
distribution can be considered a good alternative to some well known distributions.
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