ABSTRACT

Background: The diagnosis and treatment of drug resistant tuberculosis (TB) has presented a unique challenge to the control of TB in Nigeria.

Aim: This study sought to establish the prevalence of rifampicin-resistant TB in our state with a view to advocating for more commitment to efforts toward the treatment and control of drug-resistant TB, including establishment of more treatment centres in the geopolitical zone.

Method: A retrospective review of Mycobacterium tuberculosis and Rifampicin resistance detected by GeneXpert™ analysis between 2015 and 2017 in Braithwaite Memorial Specialist Hospital was carried out.

Results: A total of 6733 samples were received and analyzed in the period under review, 1252 (19%) were positive for Mycobacterium tuberculosis and 5841 (81%) were negative. The prevalence of Mycobacterium tuberculosis was 24.56% in 2015, 20.11% was reported in 2016 and 16.86% was reported in 2017. There was a significant decline in the prevalence of MTB from 2015 to 2017 ($\chi^2 = 33.59, p = 0.0001$). In 2015, RIF resistance was 5.42%, in 2016, it was 5.86% and 6.22% in 2017. There was no significant trend in the Rifampicin resistance in the period under review ($\chi^2 = 0.21; p = 0.6418$).

Conclusion: The study showed that despite a decrease in the prevalence of tuberculosis infection, there was an increase in Rifampicin resistance from 5.42% to 6.22% between 2015 and 2017. There is an urgent need to improve the management of TB in the Port Harcourt metropolis to improve treatment outcomes and prevent the proliferation of drug resistant strains.

Keywords: GeneXpert, Rifampicin-resistance, Trend, Tuberculosis,
Nigeria to range from 1.8% (0.0 to 4.3%) for new cases up to 7.7% (0.0 to 18.0%) for previously treated patients (Boehme et al., 2010). Despite antiretroviral therapy (ART), tuberculosis (TB) remains a major cause of morbidity and mortality among persons with human immunodeficiency virus (HIV) infection in Sub-Saharan Africa [2]. Prompt and accurate diagnosis of TB and timely initiation of appropriate treatment decreases TB transmission and mortality [8-10]. To aid prompt TB diagnosis, the World Health Organization (WHO) in 2010 endorsed the Cepheid Xpert® MTB/RIF (Xpert) as a first line tool for diagnosis of HIV-associated TB [6,11]. Xpert is a nucleic acid amplification test that simultaneously detects MTB and rifampicin resistance, and has demonstrated high sensitivity (79.7–100%) as well as shorter diagnostic turnaround time (<2 h) when compared to TB culture [10-12]. As at 2015, 60% of countries recommended Xpert as the initial TB test for persons with possible drug-resistant (DR) TB, and 69% recommended it as the initial diagnostic test in cases of presumptive HIV associated TB [13-15]. In resource poor settings such as Nigeria, drug resistant testing is almost always based on tests from GeneXpert analysis which only detects Rifampicin resistance. The early detection of drug resistance will definitely aid the managing physician for effective treatment of the patient. An assessment of the trend in Mycobacterium tuberculosis prevalence and Rifampicin-resistance was assessed in Rivers State, Nigeria.

METHODS

Study Design
A retrospective analysis of the prevalence of TB and rifampicin resistance at the Braithwaite Memorial Specialist Hospital between 2015 and 2017 was carried out.

Study Area
The study was carried out in Port Harcourt, the capital city of Rivers state, Nigeria. The state is an oil rich state. The study was conducted in GeneXpert TB Laboratory at the Braithwaite Memorial Specialist Hospital (BMSH) in Rivers State.

Study population and Sample
The study population consisted of 6733 presenting with symptoms suggestive of tuberculosis and sent for laboratory diagnosis at the Pathology Department of the Hospital between 2015 and 2017.

Specimen Analysis
Samples were obtained from each informed patient and tested with GeneXpert instrument and was reported as: (1) MTB detected rifampicin resistance detected, (2) MTB detected rifampicin resistance not detected, (3) MTB not detected, or (4) MTB detected Indeterminate. Patients with indeterminate results had the test repeated using fresh samples, and results of the repeat Xpert test were documented as the final Xpert result. Based on the WHO case definition, a patient was classified as having Pulmonary TB if sputum sample was positive by SM or Xpert (bacteriologically confirmed case) or if SM and Xpert were negative but the treating physician made a diagnosis of Pulmonary TB and initiated full TB treatment (clinical diagnosis) [15-17].

Comment [EY8]: Many repetitions

Comment [EY9]: First usage
Data Collection and Analysis

Data from laboratory records between 2015 and 2017 was collected and imputed into the Microsoft Excel sheet and analysis. Frequency count and percentage was used to analyze the number of *Mycobacterium tuberculosis* detected by GeneXpert™. Chi-square for trend was used to analyze the prevalence of *Mycobacterium tuberculosis* and Rifampicin-resistance in the different years of the period under review. All analysis was done with the Epi Info software at a 95% confidence interval and a p-value of less than 0.05 was considered significant.

RESULTS

Figure 1 shows that of the 6733 samples received and analyzed in the period under review, 1252 (19%) were positive for *Mycobacterium tuberculosis* and 5841 (81%) were negative. Figure 3 shows the prevalence of *Mycobacterium tuberculosis* in the period under review, a 24.56% was observed in 2015, 20.11% was reported in 2016 and 16.86% was reported in 2017. There was a significant decline in the prevalence of MTB from 2015 to 2017 ($\chi^2 = 33.59, p = 0.0001$). Table 1 shows the trend of Rifampicin resistance in the period under review. In 2015, Rif-resistant was 5.42%, in 2016, it was 5.86% and 6.22% in 2017.

![Figure 1: Distribution of MTB Positive samples](image)

Figure 2 shows the distribution of the samples received for *MTB* analysis in the period under review.
Figure 2: Distribution of Samples Analyzed in the Period Under Review
Table 1: Distribution of Rifampicin Resistance 2015 - 2017

<table>
<thead>
<tr>
<th>Year</th>
<th>MTB positive (n)</th>
<th>RIF Resistant (n)</th>
<th>% RIF Resistance</th>
<th>χ^2 for trend (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>240</td>
<td>13</td>
<td>5.42</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>256</td>
<td>15</td>
<td>5.86</td>
<td>0.21 (0.6418)**</td>
</tr>
<tr>
<td>2017</td>
<td>756</td>
<td>47</td>
<td>6.22</td>
<td></td>
</tr>
</tbody>
</table>

A bit more detail sociodemographic data on the patients would help

Figure 3: Prevalence of MTB in the Period under review

$\chi^2 = 33.59$, $p = 0.0001$
Drug resistant TB develops due to inadequate treatment of active pulmonary TB. Inadequate treatment could result due to poor drug selection, lack of adherence to duration of treatment, failure of the appropriate treatment of TB patients. Programatically this could be from improper prescription of anti-TB treatment regimens, inadequate drug supply, poor quality of drugs, high default and treatment failure rates [18-20].

The average prevalence of TB in the period under review was 20.5%. This is higher than the national average of between 11 – 15% as reported in previous studies (Table 1 shows the trend of Rifampicin resistance in the period under review). In 2015, RIF-resistance was 5.42%, in 2016, it was 5.86% and 6.22% in 2017 [21-26]. This high prevalence may be attributed to the metropolitan nature of Port Harcourt city and the fact that people from neighboring states seek medical attention in the city due to the presence of secondary health care institutions with diagnostic facilities not found in primary health care institutions in the rural and semi-urban areas, a general phenomenon in low and middle-income countries [22, 27]. There was a significant decline in TB prevalence from 24.56% in 2015, to 16.86% in 2017 ($\chi^2 = 33.59$, $p = 0.0001$). This decline corresponds with the reported improvement in TB detection as a result of the increased surveillance mechanisms due to foreign aid and intervention of the TB control program in the country [28-31]. Rifampicin resistance was found to increase from 5.42%, in 2015 to 6.22% in 2017. Prevalence of drug resistant TB among the study subjects which is lower than the previously reported 7.6% in treatment naïve subjects by Dinic et al., [17] but considerably lower than the 62.5% reported in South West Nigeria. This prevalence could also be an indication of the prevalence of MDR-TB among the TB infected subjects, which is consistent with the 6% reported by Nwofor et al. [31]. but slightly higher than the 5.5% reported by Dinic et al. [17]. This is a common occurrence in HIV-prevalent settings where Isoniazid (INH) prophylaxis is used as a preventive measures exacerbating the challenge of multidrug resistance [31, 32]. The overall prevalence of rifampicin resistant Mycobacterium tuberculosis in Nasarawa State, Nigerian in a study carried out by Audu et al. showed 12.1% among the MTB positive patients who constituted 18.8% of the total analyzed data [4]. The study showed high prevalence of rifampicin resistance (62.8%) among patients from other facilities and 37.2% were from the host facility. The resistance rate was higher in Nasarawa compared to Port Harcourt. The reduced prevalence in the host facility in Nasarawa may be due to the fact that the host facility serves as a referral centre, and suspected drug resistant cases were referred to the Gene Xpert laboratory. This also confirms a report from India that showed that patients referred from facilities outside the facility hosting the laboratory carrying out the diagnosis may have higher prevalence due to selective referrals. Antiretroviral treatment (ART) clinics refer patients more often which also contributes to the lower prevalence in the host facility [34]. A study carried out on 446 sputum specimens sent to TB Referral Hospital Igbogene, Yenagoa Nigeria between January to December 2016 had 102 (22.9%) of the sputum specimens positive for Mycobacterium tuberculosis. Out of the 102 positive MTB, 15 (14.7%) showed rifampicin resistance. Their study has established a high prevalence of rifampicin resistance Yenega state. Rifampicin resistance in Yenegoa in 2016 was higher than rifampicin resistance for 2015, 2016 and 2017 in Port Harcourt Referral hospital. Other studies from different parts of the world show various prevalence rates. In South Africa, rifampicin resistance ranged between 7.3% and 10%, and from Indoneisa, studies showed that 20.5 to 22% culture isolates showed resistance to at least one first-line drug [35-36].
CONCLUSION

Despite the decrease in the prevalence of Tuberculosis (TB) observed, there was an increase in the occurrence of rifampicin resistance in the period under review. This could be an indication of failed treatment, increase in recurrent infections or the proliferation of drug resistant Mycobacterium tuberculosis. There is an urgent need to improve the management of TB in the Port Harcourt metropolis to improve treatment outcomes and prevent the proliferation of drug resistant strains. Keeping to medications, prompt detection and consistent follow up should be adhered to in order to reduce the development and spread of drug resistant Mycobacterium tuberculosis. We recommend that ant-TB resistant survey should be carried out on a quarterly bases in all the states in Nigeria.

REFERENCES

