Original Research Article

EVALUATION OF MEDIAN LETHAL DOSE AND SUBCHRONIC ORAL TOXICITY ASSESSMENT OF ETHANOLIC LEAF EXTRACT OF PHYLLANTHUS AMARUS

ABSTRACT

*Phyllanthus amarus* is a well-known tropical herb, recognized for its importance in the treatment of various ailments. This study was designed to evaluate the median lethal dose (LD$_{50}$) and subchronic toxicity of the crude ethanolic leaf extract of *Phyllanthus amarus*. Crude ethanolic fresh leaf extract of wild growing *Phyllanthus amarus* was prepared and used for study. The LD$_{50}$ and sub-chronic toxicity were evaluated using standard procedures and documented methods.

**Aims:** To determine the median lethal dose (LD$_{50}$) of crude ethanolic leaf extract of *Phyllanthus amarus* and evaluate its sub-chronic oral toxicity in experimental mice (BALB/C strain).

**Study design:** Randomized animal model laboratory experiment.

**Place and Duration of Study:** Department of Medical Biochemistry, Delta State University, Abraka, Nigeria, between December, 2014 and November, 2015.

**Methodology:** Crude ethanolic leaf extract of *P. amarus* was prepared as previously described and twenty (20) Swiss albino mice (BALB/C strain) were randomly and equally divided into two (2) groups and administered 2000mg/kg (Group A) and 5000mg/kg (Group B of the prepared extract as single oral dose in line with the limit dose method of determining LD$_{50}$. For the sub-chronic oral toxicity study, ten (10) mice were assigned into control (n=5) and experimental (n=5). The control animals were given placebo-normal saline, but the experimental mice were administered with nocebo - 300mg/kg of *P. amarus* of crude ethanolic extract for twenty one (21) days. Thereafter, the animals in each group were sacrificed and then, serum and liver homogenate were obtained for the assay of total antioxidant capacity (TAC) and oxidative damage (Malondialdehyde-MDA) Using documented methods. Liver tissue was also processed for histopathological examination using H&E stain.

**Results:** Data show LD$_{50}$ of the extract to be greater than 5000mg/kg. Assessment of the herb’s sub-chronic oral toxicity indicates that the leaf extract significantly (P=.03) enhanced total antioxidant capacity (TAC) in both serum (Control TAC=0.10±0.03, Experimental TAC=0.33±0.05) and liver (Control TAC=0.12±0.09, Experimental TAC=0.34±0.06) but reduced (P=.01) the biomarker for liver tissue (Control MDA=41.89±3.36, Experimental =4.67±4.04). In addition, hepatic cells were invigorated by *P. amarus* treatment as suggested by the histopathological features.

**Conclusion:** Collectively, *P. amarus* crude ethanolic leaf extract possesses high degree of tolerance and hepatic tonic potential with no identifiable toxic or side effects. Therefore, the structure and mechanism of the active chemicals need to be further elucidated.

**Keywords:** Phyllanthus amarus, Median Lethal Dose (LD$_{50}$), Sub-chronic Toxicity, Total Antioxidant Capacity (TAC), Malondialdehyde (MDA).

INTRODUCTION

The use of plants, plant extracts or plant-derived chemicals to treat diseases is a therapeutic modality that has been explored for centuries. Over 40,000 species of tropical flowering plants are known to possess medicinal properties [1] and are currently in use for various medical conditions. Majority of Africans patronize herbal or traditional medicine for their health needs. It is estimated that 70-80% of patients in Africa are treated by traditional healers and herbal practitioners [2]. Modern medicine recognizes herbalism as a form of alternative medicine based on evidence derived from scientific methods [3]. Herbal medicine is, thus, gaining popularity and one of such herbs receiving wide patronage is *Phyllanthus amarus*.
Biochemical Assay: Animal Sacrifice and Collection of Sample

Subchronic Study: Evaluation of lethal and effective doses (LD<sub>50</sub> and ED<sub>50</sub>): LD<sub>50</sub> and ED<sub>50</sub> were determined by the limit dose method [35]. A total of thirty (30) mice (20 for LD<sub>50</sub> and 10 for ED<sub>50</sub>) were used. In the phase of LD<sub>50</sub> determination, the mice were divided into two groups of ten (10) mice each. They were treated with ethanolic leaf extract of *Phyllanthus amarus* at doses of 2000 and 5000mg/kg body weight as oral single dose. The animals were observed for 24 hours first and then, for twenty one (21) days for any sign of toxicity and mortality.

Subchronic Study: For the subchronic study, the remaining ten (10) mice were divided into Control (n=5) and Experimental (n=5) Groups. The Experimental Group was administrated 300mg/kg/d *P. amarus* ethanolic leaf extract as single daily dose for 21 days. The dosing regimen was based on previous experience [22]. The animals were observed for any physical signs of toxicity, morbidity and mortality. Their body weights were measured weekly during the 21-day study period.

Animal Sacrifice and Collection of Sample: On the 21<sup>st</sup> day of the experiment, the mice were fasted overnight and sacrificed the next day under chloroform anaesthesia. The liver was excised and whole blood was collected by heart puncture and centrifuged (Cent 80D, Serico, China) to obtain serum which was used for the biochemical analyses of total antioxidant capacity (TAC) and malondialdehyde (MDA) levels. The excised liver was fixed in 10% formol saline for histological processing and examination. However, a portion (0.5g) was homogenized and then, prepared for biochemical assay.

Biochemical Assay: Total antioxidant capacity, TAC in serum and liver homogenate as determined by the Trolox Equivalent Antioxidant Capacity (TEAC) method described by Miller et al.[36] and MDA levels were estimated by the Thio-Barbituric Acid Reacting Substances (TBARS) method earlier described by Ohikawa et al.[37]. TAC provides information on degree of antioxidant defense, and MDA indicates a measure of membrane lipid peroxidation, and hence, oxidative stress/damage.
**Histological Studies**: The portion of the liver tissue fixed in 10% formol saline was processed overnight using histokinette and embedded in paraffin wax. Three sections - four micron in thickness - were cut from each paraffin block.

**Light Microscopic Examination**: One section from each sample was stained with Hæmatoxylin and Eosin (H&E) stain by the standard method for light microscopic (histological) examination.

**Statistics**: Data were presented as Mean ± S.D and analyzed by the Student’s t-Test using SPSS software package version 20. Significant difference was set at $P=0.05$

**RESULTS**

Results obtained from evaluation of median lethal dose (LD$_{50}$) and subchronic oral toxicity study of the ethanolic leaf extract of *Phyllanthus amarus* grown freely in uncultivated land space in Abraka, Ethiope East Local Government Area of Delta State, Nigeria, are shown in Tables 1-2 and Figures 1-2. Table 1 shows the cage side physical observations of the control and experimental mice used in the determination of LD$_{50}$, while, Table 2 presents the biochemical data (TAC and MDA) obtained from both serum and liver tissues of the animals used to assess subchronic oral toxicity. Then, Figures 1-2 are the histological features of the liver tissues excised from Control (Fig. 1) and *P. amarus* (300mg/kg/d for 21 days) treated mice (Fig. 2).

![Histological Study Image](image)

**Fig. 1**: Photomicrograph of liver tissue from control mouse showing normal hepatocytes. Magnification ×100 (H & E stain).
Table 2: Changes in total antioxidant capacity (TAC) and malondialdehyde levels (MDA) induced by subchronic oral toxicity study of *P. amarus* crude ethanolic leaf extract.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Test</th>
<th>Control</th>
<th>300mg</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERUM</td>
<td>TAC (mM)</td>
<td>0.10±0.03</td>
<td>0.32±0.05*</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td>MDA (µM)</td>
<td>40.33±3.36</td>
<td>21.02±1.59*</td>
<td>.02</td>
</tr>
<tr>
<td>LIVER</td>
<td>TAC (mM)</td>
<td>0.12±0.09</td>
<td>0.34±0.06*</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td>MDA (µM)</td>
<td>41.89±2.27</td>
<td>4.67±4.04*</td>
<td>.01</td>
</tr>
</tbody>
</table>

Data are presented as Mean ±SD for n=5

*Significantly different from comparable control values at P<0.05

TAC-Total antioxidant capacity, MDA-Malondialdehyde.

The subchronic oral toxicity of *P. amarus* crude ethanolic leaf extract was studied by administering 300mg/kg/d of the plant extract to experimental BALB/c mice for 21 days.

DISCUSSION

Herbal medicine is the use and study of plants and their derived products for medicinal purposes. Plants have been the basis for medical treatments through much of human history and such traditional medicine is still being practiced today [38]. Herbal medicines are used in underdeveloped, developing and even in developed countries. Reports indicating that herbal drugs are safe and free from toxic side effects may not be absolutely true [39]. So, toxicological evaluations
of all medicinal plants are important in order to ascertain their safety. Therefore, clear understanding of the adverse effect of herbs used by humans is necessary for the implementation of safety measures. In this regard, this study attempted to evaluate the LD$_{50}$ and subchronic oral toxicity of the crude ethanolic leaf extract of *Phyllanthus amarus*.

Result of the limit dose test indicates that the LD$_{50}$ of *P. amarus* crude ethanolic leaf extract is well above 5000mg/kg with an ED$_{50}$ of 2000mg/kg and hence, therapeutic index of 25. These observations show that the herb possesses very high phytotherapeutic efficacy with no demonstrated toxicity. These findings suggest that *Phyllanthus amarus* is safe and non-toxic with very high remedy potential in experimental mice. This agrees with previous documents [40].

Chronic toxicity study identifies and provides information on drugs that could possibly cause harm and pose health challenges [41]. The subchronic oral toxicity assessment of *P. amarus* crude ethanolic leaf extract during this study, reveals that the extract significantly ($P=.03$) boosted antioxidant defense activity in both blood and liver tissue with associated reduction ($P=.01$) in overall membrane damage. The liver is the organ involved in several metabolic functions and is therefore prone to xenobiotic-induced injury because of its central role in xenobiotic metabolism [42]. Histopathological examination of the liver shows that *P. amarus* administered at 300mg/kg/d for 21 days invigorated liver cells. Hepatotoxic drugs could cause peroxidation of liver cell membrane lipids and increase the amount of end products such as MDA [41].

Data suggest that *Phyllanthus amarus* extract has a measure of health benefits as shown by the significant decrease in malondialdehyde (MDA) levels and associated increase in total antioxidant capacity, TAC (Table 2). The decrease in malondialdehyde level may be as a result of the increased antioxidant activities of *Phyllanthus amarus* [43]. Increased antioxidant activities in cells causes a decrease in free radicals thereby reducing lipid peroxidation and malondialdehyde production. The reduction in both blood and liver malondialdehyde levels suggests that the extract may contain mixture of biomolecules with hydroxyl groups that perhaps prevented the abstraction of hydrogen from the double bond of lipid bilayers thereby preventing lipid peroxidation. This suggestion corroborates previous report on the in vitro analysis of the plant extract [44].

Phytochemical studies of *Phyllanthus amarus* extract have shown that the plant contains chemicals such as flavonoids, tannins, saponins, alkaloids, terpenoids, glycosides and phenols [44,21]. Flavonoids present in the plant have been shown to possess several pharmacological properties such as antioxidant activities and anti-inflammatory activities [20,45]. Flavonoid as an antioxidant has a rejuvenating effect on cells and tissues [46], Tannin has demonstrated high activities against viral and bacterial infections as well as acting as strong antioxidant [47]. The antioxidant activity of this plant phytochemicals may have contributed to the decrease in MDA levels observed in this study. These findings are concurrent with previous studies conducted on the toxicological assessment of *Phyllanthus amarus* [48].

**CONCLUSION**

From the results of this study, oral administration of *Phyllanthus amarus* extract is considered non-toxic to mice at all doses (2000mg/Kg body weight to 5000mg/Kg body weight). Toxicity studies of *Phyllanthus amarus* extract administration showed the absence of cumulative toxicity as reflected in the absence of mortality recorded even at the highest dose level (5000mg/Kg body weight) of the plant extract as well as results from the histological studies. In the light of these findings, we can conclude that *Phyllanthus amarus* plant materials have no significant toxic effect in Swiss albino mice for all the doses studied herein.

**RECOMMENDATION**

Put together, the crude ethanolic leaf extract of *Phyllanthus amarus* is bestowed with very high phytotherapeutic efficacy and vitalizing property with no recognizable toxic effect. Therefore, the phytochemicals and nutrient quality of *P. amarus* need to be characterized for functional analysis.

**REFERENCES**


### Cage side physical observations after 24 hours and 21 days

<table>
<thead>
<tr>
<th>Conditions</th>
<th>2000mg/kg 24hours</th>
<th>5000mg/kg 24hours</th>
<th>5000mg/kg 21days</th>
<th>Control (0mg/kg) 21days</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Condition of fur</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>2 Skin appearance</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>3 Subcutaneous swelling</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>4 Abdominal distention</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>5 Eye dullness</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>6 Eye opacity</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
<td>Nil</td>
</tr>
<tr>
<td>7 Pupil diameter</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>8 Colour/consistency of faeces</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>9 Teeth condition</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>10 Gait</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>11 Weight gain (%)</td>
<td>0.3</td>
<td>5.0</td>
<td>0.5</td>
<td>7.0</td>
</tr>
<tr>
<td>12 Mortality</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Table 1: Cage side physical observations during the LD₅₀ evaluation of *P. amarus* ethanolic leaf extract**

Evidence from observations (Table 1) indicates that the LD₅₀ of *P. amarus* crude ethanolic leaf extract is greater than 5000mg/kg. Trial doses cannot be increased beyond 5000mg/kg because that is the limit dose. Effective dose (ED₅₀) = 200mg/kg. Hence, therapeutic index, TI (LD₅₀ / ED₅₀) = 25.0